If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+19X-4000=0
a = 1; b = 19; c = -4000;
Δ = b2-4ac
Δ = 192-4·1·(-4000)
Δ = 16361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{16361}}{2*1}=\frac{-19-\sqrt{16361}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{16361}}{2*1}=\frac{-19+\sqrt{16361}}{2} $
| 72= |9y∣ | | -3u=u•u | | 5x2+15x+45=0 | | -0.3x-30=x= | | 0.5(3x+4)=x+7 | | 8-3y=16 | | 2(x+1)+x=95 | | 0.2(x3)=-10 | | 4(2x-8)=160 | | -1/7=-2/7+3/4c | | 2x+41+3x=180 | | 780=5d | | 10x+55-5x-30=45 | | y*0.3=0.63 | | 15x-7=49 | | (7x+8)=-4x-8−4x−8 | | -8(c+10)=-(c+3) | | 4x-15=6x-3 | | 5^(3x-2)=6 | | -2x=+8-X-7 | | 20(7+d)-9d=118 | | 10y-5-2y=3 | | 20(7+d)-9=118 | | 72+x=150 | | s/9+61=71 | | 2g^2-16g=-32 | | –8+–7n=–71 | | 0=x^2-2x+0.75 | | 3.2-w/3=-10.7 | | 20=2(k+3) | | (5x-10)^{3}(2x+16)=0 | | 5/3-7/2w=-8/5 |